Bell
Jump to navigation
Jump to search
\(\displaystyle\begin{align*}|\phi_0\rangle = \frac{1}{\sqrt{2}}(|0\rangle\otimes|0\rangle + |1\rangle\otimes|1\rangle) & & & & |\phi_2\rangle = \frac{1}{\sqrt{2}}(|0\rangle\otimes|1\rangle + |1\rangle\otimes|0\rangle) \\ |\phi_1\rangle = \frac{1}{\sqrt{2}}(|0\rangle\otimes|0\rangle - |1\rangle\otimes|1\rangle) & & & & |\phi_3\rangle = \frac{1}{\sqrt{2}}(|0\rangle\otimes|1\rangle - |1\rangle\otimes|0\rangle) \\\end{align*}\)
Bell | |
Produces a Bell state | |
Other toolboxes required | none |
---|---|
Related functions | MaxEntangled |
Function category | Special states, vectors, and operators |
Bell is a function that returns one of the four Bell states in 2-qubit space:
Syntax
- PHI = Bell()
- PHI = Bell(IND)
- PHI = Bell(IND,SP)
- PHI = Bell(IND,SP,NRML)
Argument descriptions
- IND (optional, default 0): The index of the Bell state (i.e., the subscript, from 0 to 3, of the Bell state that you would like, as indicated above).
- SP (optional, default 0): A flag (either 1 or 0) indicating that PHI should or should not be sparse.
- NRML (optional, default 1): A flag (either 1 or 0) indicating that PHI should or should not be scaled to have Euclidean norm 1. If NRML=0 then each entry of PHI is 0 or 1, so it has norm $\sqrt{2}$.
Examples
The following code generates a matrix whose columns are the four different Bell states:
>> [Bell(0),Bell(1),Bell(2),Bell(3)]
ans =
0.7071 0.7071 0 0
0 0 0.7071 0.7071
0 0 0.7071 -0.7071
0.7071 -0.7071 0 0
Source code
Click here to view this function's source code on github.