Entropy
Jump to navigation
Jump to search
Entropy | |
Computes the von Neumann or Rényi entropy of a density matrix | |
Other toolboxes required | none |
---|---|
Function category | Information theory |
Entropy is a function that computes the von Neumann entropy or Rényi entropy of a density matrix. That is, given a density matrix $\rho$, it computes the following quantity:
\[S(\rho) := -\mathrm{Tr}\big(\rho\log_2(\rho)\big)\]
(i.e., the von Neumann entropy) or the following quantity:
\[S_\alpha(\rho) := \frac{1}{1-\alpha}\log_2\big(\mathrm{Tr}(\rho^\alpha)\big)\]
(i.e., the Rényi-\(\alpha\) entropy).
Syntax
- ENT = Entropy(RHO)
- ENT = Entropy(RHO,BASE)
- ENT = Entropy(RHO,BASE,ALPHA)
Argument descriptions
- RHO: A density matrix to have its entropy computed.
- BASE (optional, default 2): The base of the logarithm used in the entropy calculation.
- ALPHA (optional, default 1): A non-negative real parameter that determines which entropy is computed (ALPHA = 1 corresponds to the von Neumann entropy, otherwise the Rényi-ALPHA entropy is computed).
Examples
The extreme cases: pure states and maximally-mixed states
A pure state has entropy zero:
>> Entropy(RandomDensityMatrix(4,0,1)) % entropy of a random 4-by-4 rank-1 density matrix
ans =
7.3396e-15 % silly numerical errors: this is effectively zero
A d-by-d maximally-mixed state has entropy \(\log_2(d)\):
>> Entropy(eye(4)/4)
ans =
2
All other states have entropy somewhere between these two extremes:
>> Entropy(RandomDensityMatrix(4))
ans =
1.6157
Notes
The Rényi-\(\alpha\) entropy approaches the von Neumann entropy as \(\alpha \rightarrow 1\).
Source code
Click here to view this function's source code on github.