GisinState
Jump to navigation
Jump to search
GisinState | |
Produces a two-qubit Gisin state | |
Other toolboxes required | none |
---|---|
Function category | Special states, vectors, and operators |
GisinState is a function that produces a two-qubit "Gisin state", as defined in [1], which has the following standard basis representation: \[\rho_{\lambda,\theta} := \lambda\begin{bmatrix}0 & 0 & 0 & 0 \\ 0 & \sin^2(\theta) & -\sin(\theta)\cos(\theta) & 0 \\ 0 & -\sin(\theta)\cos(\theta) & \cos^2(\theta) & 0 \\ 0 & 0 & 0 & 0\end{bmatrix} + \frac{1-\lambda}{2}\begin{bmatrix}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{bmatrix}.\]
Syntax
- GISIN_STATE = GisinState(LAMBDA,THETA)
Argument descriptions
- LAMBDA: A real number between 0 and 1.
- THETA: A real number.
Examples
The following code generates the Gisin state $\rho_{0.5,1}$:
>> GisinState(0.5,1)
ans =
0.2500 0 0 0
0 0.3540 -0.2273 0
0 -0.2273 0.1460 0
0 0 0 0.2500
Source code
Click here to view this function's source code on github.
References
- ↑ N. Gisin. Hidden quantum nonlocality revealed by local filters. 1996. doi:10.1016/S0375-9601(96)80001-6