IsotropicState
Jump to navigation
Jump to search
\(\displaystyle\rho_\alpha := \frac{1-\alpha}{d^2}I\otimes I + \alpha|\psi_+\rangle\langle\psi_+| \in M_d \otimes M_d,\)
IsotropicState | |
Produces an isotropic state | |
Other toolboxes required | none |
---|---|
Related functions | WernerState |
Function category | Special states, vectors, and operators |
IsotropicState is a function that returns an isotropic state (i.e., a state of the following form):[1]
where $|\psi_+\rangle:=\frac{1}{\sqrt{d}}\sum_j|j\rangle\otimes|j\rangle$ is the standard maximally-entangled pure state. Note that the output of this function is a sparse matrix.
Syntax
- RHO = IsotropicState(DIM,ALPHA)
Argument descriptions
- DIM: Dimension of the local subsystems on which RHO acts.
- ALPHA: A parameter that specifies which isotropic state is to be returned. In particular, RHO = (1-ALPHA)*I/DIM^2 + ALPHA*E, where I is the identity operator and E is the projection onto the standard maximally-entangled pure state on two copies of DIM-dimensional space. In order for RHO to be positive semidefinite (and hence a valid density matrix), it must be the case that -1/(DIM^2-1) ≤ ALPHA ≤ 1.
Examples
A qutrit isotropic state
To generate the isotropic state with parameter $\alpha = 1/2$, the following code suffices:
>> full(IsotropicState(3,1/2))
ans =
0.2222 0 0 0 0.1667 0 0 0 0.1667
0 0.0556 0 0 0 0 0 0 0
0 0 0.0556 0 0 0 0 0 0
0 0 0 0.0556 0 0 0 0 0
0.1667 0 0 0 0.2222 0 0 0 0.1667
0 0 0 0 0 0.0556 0 0 0
0 0 0 0 0 0 0.0556 0 0
0 0 0 0 0 0 0 0.0556 0
0.1667 0 0 0 0.1667 0 0 0 0.2222
Isotropic states in general have a lot of zero entries, so this function always returns a sparse matrix. If you want a full matrix (as above), use MATLAB's full function.
>> IsotropicState(3,1/2)
ans =
(1,1) 0.2222
(5,1) 0.1667
(9,1) 0.1667
(2,2) 0.0556
(3,3) 0.0556
(4,4) 0.0556
(1,5) 0.1667
(5,5) 0.2222
(9,5) 0.1667
(6,6) 0.0556
(7,7) 0.0556
(8,8) 0.0556
(1,9) 0.1667
(5,9) 0.1667
(9,9) 0.2222
Source code
Click here to view this function's source code on github.
References
- ↑ M. Horodecki and P. Horodecki. Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A, 59:4206–4216, 1999. E-print: arXiv:quant-ph/9708015