Difference between revisions of "Sk iterate"

From QETLAB
Jump to navigation Jump to search
(Created page with "{{Function |name=sk_iterate |desc=Computes a lower bound of the S(k)-norm of an operator |req=iden<br />MaxEntangled<br />normalize_cols<br />opt_args<br /...")
 
m (external link)
 
(4 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
|name=sk_iterate
 
|name=sk_iterate
 
|desc=Computes a lower bound of the [[S(k)-norm]] of an operator
 
|desc=Computes a lower bound of the [[S(k)-norm]] of an operator
|req=[[iden]]<br />[[MaxEntangled]]<br />[[normalize_cols]]<br />[[opt_args]]<br />[[PermuteSystems]]<br />[[SchmidtDecomposition]]<br />[[SchmidtRank]]<br />[[sporth]]<br />[[Swap]]
+
|rel=[[SchmidtDecomposition]]<br />[[SchmidtRank]]<br />[[SkOperatorNorm]]
|rel=[[SkOperatorNorm]]
+
|cat=[[List of functions#Helper_functions|Helper functions]]
|upd=March 11, 2013
+
|upd=November 14, 2014
|v=1.01
+
|v=0.60
 
|helper=1}}
 
|helper=1}}
 
<tt>'''sk_iterate'''</tt> is a [[List of functions|function]] that iteratively computes a lower bound on the [[S(k)-operator norm|S(k)-norm of an operator]]<ref>N. Johnston and D. W. Kribs. A Family of Norms With Applications in Quantum Information Theory. ''J. Math. Phys.'', 51:082202, 2010. E-print: [http://arxiv.org/abs/0909.3907 arXiv:0909.3907] [quant-ph]</ref><ref>N. Johnston and D. W. Kribs. A Family of Norms With Applications in Quantum Information Theory II. Quantum Information & Computation, 11(1 & 2):104–123, 2011. E-print: [http://arxiv.org/abs/1006.0898 arXiv:1006.0898] [quant-ph]</ref>:
 
<tt>'''sk_iterate'''</tt> is a [[List of functions|function]] that iteratively computes a lower bound on the [[S(k)-operator norm|S(k)-norm of an operator]]<ref>N. Johnston and D. W. Kribs. A Family of Norms With Applications in Quantum Information Theory. ''J. Math. Phys.'', 51:082202, 2010. E-print: [http://arxiv.org/abs/0909.3907 arXiv:0909.3907] [quant-ph]</ref><ref>N. Johnston and D. W. Kribs. A Family of Norms With Applications in Quantum Information Theory II. Quantum Information & Computation, 11(1 & 2):104–123, 2011. E-print: [http://arxiv.org/abs/1006.0898 arXiv:1006.0898] [quant-ph]</ref>:
Line 11: Line 11:
 
   \|X\|_{S(k)} := \sup_{|v\rangle , |w\rangle } \Big\{ \big| \langle w| X |v \rangle \big| : SR(|v \rangle), SR(|v \rangle) \leq k, \big\||v \rangle\big\| = \big\||w \rangle\big\| = 1 \Big\},
 
   \|X\|_{S(k)} := \sup_{|v\rangle , |w\rangle } \Big\{ \big| \langle w| X |v \rangle \big| : SR(|v \rangle), SR(|v \rangle) \leq k, \big\||v \rangle\big\| = \big\||w \rangle\big\| = 1 \Big\},
 
$$
 
$$
where $SR(\cdot)$ refers to the [[Schmidt rank]] of a pure state.
+
where $SR(\cdot)$ refers to the [[Schmidt rank]] of a pure state. The method used to compute this lower bound is described [http://www.njohnston.ca/2016/01/how-to-compute-hard-to-compute-matrix-norms/ here].
  
 
==Syntax==
 
==Syntax==
Line 39: Line 39:
 
$$
 
$$
 
has S(1)-norm equal to $(3+2\sqrt{2})/8 \approx 0.7286$. The following code shows that this quantity is indeed a lower bound of the S(1)-norm:
 
has S(1)-norm equal to $(3+2\sqrt{2})/8 \approx 0.7286$. The following code shows that this quantity is indeed a lower bound of the S(1)-norm:
<pre>
+
<syntaxhighlight>
 
>> rho = [5 1 1 1;1 1 1 1;1 1 1 1;1 1 1 1]/8;
 
>> rho = [5 1 1 1;1 1 1 1;1 1 1 1;1 1 1 1]/8;
 
>> sk_iterate(rho)
 
>> sk_iterate(rho)
Line 46: Line 46:
  
 
     0.7286
 
     0.7286
</pre>
+
</syntaxhighlight>
 +
 
 +
{{SourceCode|name=sk_iterate|helper=1}}
  
 
==References==
 
==References==
 
<references />
 
<references />

Latest revision as of 02:41, 12 January 2016

sk_iterate
Computes a lower bound of the S(k)-norm of an operator

Other toolboxes required none
Related functions SchmidtDecomposition
SchmidtRank
SkOperatorNorm
Function category Helper functions
This is a helper function that only exists to aid other functions in QETLAB. If you are an end-user of QETLAB, you likely will never have a reason to use this function.

sk_iterate is a function that iteratively computes a lower bound on the S(k)-norm of an operator[1][2]: $$ \|X\|_{S(k)} := \sup_{|v\rangle , |w\rangle } \Big\{ \big| \langle w| X |v \rangle \big| : SR(|v \rangle), SR(|v \rangle) \leq k, \big\||v \rangle\big\| = \big\||w \rangle\big\| = 1 \Big\}, $$ where $SR(\cdot)$ refers to the Schmidt rank of a pure state. The method used to compute this lower bound is described here.

Syntax

  • SK = sk_iterate(X)
  • SK = sk_iterate(X,K)
  • SK = sk_iterate(X,K,DIM)
  • SK = sk_iterate(X,K,DIM,TOL)
  • SK = sk_iterate(X,K,DIM,TOL,V0)
  • [SK,V] = sk_iterate(X,K,DIM,TOL,V0)

Argument descriptions

Input arguments

  • X: A square positive semidefinite matrix to have its S(k)-norm bounded.
  • K (optional, default 1): A positive integer, the Schmidt rank to optimize over.
  • DIM (optional, by default has both subsystems of equal dimension): A 1-by-2 vector containing the dimensions of the subsystems that X acts on.
  • TOL (optional, default \(10^{-5}\)): The numerical tolerance used when determining whether or not the iterative procedure has converged.
  • V0 (optional, default is randomly-generated): The vector to begin the iterative procedure from.

Output arguments

  • V (optional): A vector with Schmidt rank at most K such that V'*X*V == SK.

Examples

A two-qubit example

In [3], it was shown that the density matrix $$ \rho = \frac{1}{8}\begin{bmatrix}5 & 1 & 1 & 1\\1 & 1 & 1 & 1\\1 & 1 & 1 & 1\\1 & 1 & 1 & 1\end{bmatrix} $$ has S(1)-norm equal to $(3+2\sqrt{2})/8 \approx 0.7286$. The following code shows that this quantity is indeed a lower bound of the S(1)-norm:

>> rho = [5 1 1 1;1 1 1 1;1 1 1 1;1 1 1 1]/8;
>> sk_iterate(rho)

ans =

    0.7286

Source code

Click here to view this function's source code on github.

References

  1. N. Johnston and D. W. Kribs. A Family of Norms With Applications in Quantum Information Theory. J. Math. Phys., 51:082202, 2010. E-print: arXiv:0909.3907 [quant-ph]
  2. N. Johnston and D. W. Kribs. A Family of Norms With Applications in Quantum Information Theory II. Quantum Information & Computation, 11(1 & 2):104–123, 2011. E-print: arXiv:1006.0898 [quant-ph]
  3. N. Johnston. Norms and Cones in the Theory of Quantum Entanglement. PhD thesis, University of Guelph, 2012. E-print: arXiv:1207.1479 [quant-ph]