# IsPPT

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
 Other toolboxes required IsPPT Determines whether or not a matrix has positive partial transpose none IsPSDPartialTranspose Entanglement and separability

IsPPT is a function that determines whether or not a given matrix has positive partial transpose (PPT), which is a quick and easy separability criterion. This function works on both full and sparse matrices, and if desired a witness can be provided that verifies that the input matrix is not PPT.

## Syntax

• PPT = IsPPT(X)
• PPT = IsPPT(X,SYS)
• PPT = IsPPT(X,SYS,DIM)
• PPT = IsPPT(X,SYS,DIM,TOL)
• [PPT,WIT] = IsPPT(X,SYS,DIM,TOL)

## Argument descriptions

### Input arguments

• X: A square matrix.
• SYS (optional, default 2): A scalar or vector indicating which subsystem(s) the transpose should be applied on.
• DIM (optional, default has X living on two subsystems of equal size): A vector containing the dimensions of the (possibly more than 2) subsystems on which X lives.
• TOL (optional, default sqrt(eps)): The numerical tolerance used when determining positive semidefiniteness. The matrix will be determined to have positive partial transpose if its partial transpose's minimal eigenvalue is computed to be at least -TOL.

### Output arguments

• PPT: A flag (either 1 or 0) indicating that X does or does not have positive partial transpose.
• WIT (optional): An eigenvector corresponding to the minimal eigenvalue of PartialTranspose(X). When PPT = 0, this serves as a witness that verifies that X does not have positive partial transpose, since WIT'*PartialTranspose(X)*WIT < 0.

## Examples

The following code verifies that the 9-by-9 identity operator (thought of as an operator in $M_3 \otimes M_3$) has positive partial transpose:

>> IsPPT(eye(9))

ans =

1