Difference between revisions of "UPB"

From QETLAB
Jump to navigation Jump to search
m
Line 8: Line 8:
 
==Syntax==
 
==Syntax==
 
* <tt>U = UPB(NAME)</tt>
 
* <tt>U = UPB(NAME)</tt>
* <tt>[U,V,W,...] = UPB(NAME)</tt>
+
* <tt>U = UPB(NAME,OPT_PAR)</tt>
 +
* <tt>[U,V,W,...] = UPB(NAME,OPT_PAR)</tt>
 
* <tt>U = UPB(DIM)</tt>
 
* <tt>U = UPB(DIM)</tt>
* <tt>[U,V,W,...] = UPB(DIM)</tt>
+
* <tt>U = UPB(DIM,VERBOSE)</tt>
 +
* <tt>[U,V,W,...] = UPB(DIM,VERBOSE)</tt>
  
 
==Argument descriptions==
 
==Argument descriptions==
 
===Input arguments===
 
===Input arguments===
 +
'''Important''': Do not specify both <tt>NAME</tt> and <tt>DIM</tt>: just one or the other!
 
* <tt>NAME</tt>: The name of a UPB that is found in the literature. Accepted values are:
 
* <tt>NAME</tt>: The name of a UPB that is found in the literature. Accepted values are:
 
** <tt>'Min4x4'</tt>: A UPB in $\mathbb{C}^4 \otimes \mathbb{C}^4$ constructed in <ref>T.B. Pedersen. ''Characteristics of unextendible product bases''. Thesis, Aarhus Universitet, Datalogisk Institut, 2002.</ref>.
 
** <tt>'Min4x4'</tt>: A UPB in $\mathbb{C}^4 \otimes \mathbb{C}^4$ constructed in <ref>T.B. Pedersen. ''Characteristics of unextendible product bases''. Thesis, Aarhus Universitet, Datalogisk Institut, 2002.</ref>.
 
** <tt>'Pyramid'</tt>: A UPB in $\mathbb{C}^3 \otimes \mathbb{C}^3$ constructed in <ref name="BDM99"></ref>.
 
** <tt>'Pyramid'</tt>: A UPB in $\mathbb{C}^3 \otimes \mathbb{C}^3$ constructed in <ref name="BDM99"></ref>.
 +
** <tt>'QuadRes'</tt>: A UPB in $\mathbb{C}^d \otimes \mathbb{C}^d$ (only valid when 2d-1 is prime and d is odd) constructed in <ref name="DMS03">D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, and B.M. Terhal. Unextendible product bases, uncompletable product bases and bound entanglement. ''Commun. Math. Phys.'' 238, 379&ndash;410, 2003. E-print: [http://arxiv.org/abs/quant-ph/9908070 arXiv:quant-ph/9908070]</ref>. Note that you must set <tt>OPT_PAR</tt> equal to d (the local dimension) in this case.
 
** <tt>'Tiles'</tt>: A UPB in $\mathbb{C}^3 \otimes \mathbb{C}^3$ constructed in <ref name="BDM99"></ref>.
 
** <tt>'Tiles'</tt>: A UPB in $\mathbb{C}^3 \otimes \mathbb{C}^3$ constructed in <ref name="BDM99"></ref>.
** <tt>'Shifts'</tt>: A UPB in $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ constructed in <ref name="DMS03">D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, and B.M. Terhal. Unextendible product bases, uncompletable product bases and bound entanglement. ''Commun. Math. Phys.'' 238, 379&ndash;410, 2003. E-print: [http://arxiv.org/abs/quant-ph/9908070 arXiv:quant-ph/9908070]</ref> (though a slightly different version appeared in <ref name="BDM99"></ref>).
+
** <tt>'Shifts'</tt>: A UPB in $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ constructed in <ref name="DMS03"></ref> (though a slightly different version appeared in <ref name="BDM99"></ref>).
 +
* <tt>DIM</tt>: A vector containing the local dimensions of the desired UPB. In all cases, the smallest known UPB of the desired dimensionality is returned. If no unextendible product basis is known for the specified dimensions, an error is produced.
  
 
==Examples==
 
==Examples==

Revision as of 21:38, 29 November 2012

UPB
Generates an unextendible product basis

Other toolboxes required none

UPB is a function that generates an unextendible product basis (UPB). The user may either request a specific UPB from the literature such as 'Tiles' or 'Pyramid'[1], or they may request a UPB of specified dimensions.

Syntax

  • U = UPB(NAME)
  • U = UPB(NAME,OPT_PAR)
  • [U,V,W,...] = UPB(NAME,OPT_PAR)
  • U = UPB(DIM)
  • U = UPB(DIM,VERBOSE)
  • [U,V,W,...] = UPB(DIM,VERBOSE)

Argument descriptions

Input arguments

Important: Do not specify both NAME and DIM: just one or the other!

  • NAME: The name of a UPB that is found in the literature. Accepted values are:
    • 'Min4x4': A UPB in $\mathbb{C}^4 \otimes \mathbb{C}^4$ constructed in [2].
    • 'Pyramid': A UPB in $\mathbb{C}^3 \otimes \mathbb{C}^3$ constructed in [1].
    • 'QuadRes': A UPB in $\mathbb{C}^d \otimes \mathbb{C}^d$ (only valid when 2d-1 is prime and d is odd) constructed in [3]. Note that you must set OPT_PAR equal to d (the local dimension) in this case.
    • 'Tiles': A UPB in $\mathbb{C}^3 \otimes \mathbb{C}^3$ constructed in [1].
    • 'Shifts': A UPB in $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ constructed in [3] (though a slightly different version appeared in [1]).
  • DIM: A vector containing the local dimensions of the desired UPB. In all cases, the smallest known UPB of the desired dimensionality is returned. If no unextendible product basis is known for the specified dimensions, an error is produced.

Examples

To be added.

References

  1. 1.0 1.1 1.2 1.3 C.H. Bennett, D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, and B.M. Terhal. Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385–5388, 1999. E-print: arXiv:quant-ph/9808030
  2. T.B. Pedersen. Characteristics of unextendible product bases. Thesis, Aarhus Universitet, Datalogisk Institut, 2002.
  3. 3.0 3.1 D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, and B.M. Terhal. Unextendible product bases, uncompletable product bases and bound entanglement. Commun. Math. Phys. 238, 379–410, 2003. E-print: arXiv:quant-ph/9908070